
International Archives of Photogrammetry and Remote Sensing. Vol. XXXII, Part 5. Hakodate 1998

A Fast Algorithm of Solving Large Sparse Equations

Renyan GE

R. & D. Dept., SOKKIA Co., Ltd.
260-63 Yanagi-Cho, Hase, Atsugi, Kanagawa 243

E-mail: GHA12214@niftyserve.or.jp

JAPAN

Commission V, Working Group I

KEY WORDS: Large Sparse Positive Definite Matrices, Choleski Decomposition, Partial Inverse

ABSTRACT

In this paper a fast algorithm for solving large sparse, positive definite matrices is discussed. These equations arise in many surveying
problems that are solved by the least squares adjustment, such as network adjustment, photogrammetric aerotriangulation, control
network for deformation observation, leveling and applied satellite geodesy.

1. INTRODUCTION

In the least squares adjustment the main computational burden
rests on solving the system of linear normal equation

AX=b (I. I)

Where A is a square and symmetric (semi-)positive definite n
by n matrix. This is especially true if the system is very large
that is quite common in the field of surveying. Fortunately,
often not all entries of A are nonzero, and usually the rate of
fill decreases with the size of the matrix.

If we distinguish among zero elements and nonzero elements of
a matrix, we get the concept of the sparse matrix. There are two
important advantages when we use these sparse matrices. Firstly,
if we operate only upon the nonzeros, we save time; secondly,
only the nonzeros have to be stored. However, the special data
structures and special algorithms that give an overhead in time
and storage are needed. Furthermore, we have to design special
algorithms in a way that they use and preserve sparsity.

The most popular algorithm used for the solution of the system
(I.I) is based upon Choleski decomposition of the normal
matrix A . A positive matrix A can be written as the product of

a low triangular matrix L and an upper triangular matrix L,. :

(1.2)

The solution of the system (1.1) then goes in two steps:

I. let Y = L7 X , solve Y from LY = b by forward solution;

2. solve X from L'X = Y by backward solution.

The lower triangular factor L (the Choleski factor) is computed
by a process called Choleski factorization. There are thus three
steps: Choleski factorization, forward substitution and
backward substitution, of which Choleski factorization is the

59

most time consuming.

If the normal matrix A is sparse then the Choleski factor L is
generally also a sparse matrix. The Choleski factor L has at
least the same nonzero as the lower triangle of A (neglecting
numerical cancellations), but usually there are also nonzero in
L which were not present in A . These elements are called fill
in. The amounts of fill in and the location of fill-in elements
depends on the order in which the pivots of the Choleski factor
are chosen, and hence on the order of the unknowns. The
solution of the permuted system:

(PAP')(PX) = Pb (1.3)

with permutation matrix P' and solution X = P7 (PX), is

identical (except for small round of) to the solution of the
system (1.1).

There is no need to pivot or exchange rows or columns for
stability reason. Therefore we are free to choose the order of the
unknowns, or the permutation matrix P , in such a way as to
minimize fill-in. The Minimum Envelope Strategy is one of the
method to find an ordering to permute A such that the
nonzeros are confined to a specific region as small as possible
called 'envelope'. The fill-in will occur only within the envelope.

2. THE COMPUTER REPRESENTATION OF A LARGE
SPARSE, POSITIVE DEFINITE MATRIX

In ordinary matrix calculus we deal with full rectangular
matrices. These matrices can be stored in a rather
straightforward way, whereby individual elements a ij can be

accessed very easily.

With large sparse matrices we try to store and operate on the

* P is orthogonal, thus P-1 = P' .

nonzero only, which can result in considerable saving in
computing requirements. So, firstly we have to specify a storage
scheme or data structure in order to store a large sparse matrix
in computer memory, and secondly we have to design
algorithms which use this data structure in the most profitable
sense.

There are many different storage schemes: simple ones and very
complex ones. In this paper we introduce Envelope method:

• Envelope, or variable band storage (for symmetric
matrices only); all elements within the envelope around the
nonzeros, zeros and nonzeros alike, are stored. The set of
elements aij which are stored is called Envelope(A) . Note

that only half of the matrix is stored.

Envelope(A) = {aij I J; $; j $; i} (2.1)

where

(2.2)

is the first nonzero element in row i .

The access time for a single element is not that important for
Choleski factorization and ordering algorithms, since most of
the time entire rows or columns are needed.

The nonzero storage is the most complex storage scheme. The
envelope storage scheme involves the overhead of the sparse
matrix storage schemes, and besides access time is low. In this
scheme however, also some zeros are stored and hence will be
operated upon.

The envelope storage scheme of the sparse symmetric matrix is
that VE (VectorEnvelope) stores first nonzero element and all
elements up to diagonal of every row (zeros and nonzeros alike).
So the i'th row of A needs at least /J; (A) + I units of memory

N

space; VE needs I.,(/J; + I) units memory; and PD
i=l

(PointerDiagona[) needs N units memory. So the total storage
space for sparse symmetric matrix is:

N N

I.,(/J; + 1) + N = L.,/J; + 2N (2.3)
i=l i=l

An advantage of this kind storage scheme is that all of the fill-in
elements are located between the first nonzero element and
diagonal element of i'th row when A is factored by Choleski
decomposition, the L elements can be stored in VE, while the
other elements of A are no need moving and storing.

3. THE SPARSE MATRIX AS A GRAPH

A graph G = (V, E) consists of a set nodes (or vertices) V, and

a set of edges E. We may associate the symmetric n by n matrix

A with a labeled undirected graph G-' =(VA, E-4). The set of

nodes corresponds to the diagonal entries of the matrix, the set
of edges to the off-diagonal entries. Labeled means that each
node has a unique number corresponding to a row, column or
unknown; undirected means that we do not distinguish between
the edge from node v to w and the edge from w to v, i.e. the
matrix is symmetric. For any n by n permutation matrix P cf. I,

60

the unleveled graph of A and PAPr are the same, but the as
sociated labeling are different.

4. CHOLESKI DECOMPOSITION

4.1 The Inner Product Method

In the least squares adjustment the coefficient matrix A of
linear normal equation (I.I) is a square and symmetric (semi
)positive definite n by n matrix, which has a unique triangular

factorization LLr , where L is a lower triangular matrix with
positive diagonal entries.

The linear normal equation (1.1) can be expressed by
followings:

(4.1)

There are a number of methods to perform the choleski
factorization. In some paper the 'inner product', the 'bordering'
and the 'outer product' method is distinguished. The inner
product method will be described here, since it has less
operations comparing with others. It can be described as follows.

for i= l,···,N
i-1

l = - "12 u a;; L...J ik
k = l

end of loop j

end of loop i

(4.2)

These formulae can be derived directly by equating the elements
of A to the corresponding elements of the product LLr .

4.2 Sparsity Consideration

In most practical applications the matrix to be factored is sparse.
If the sparse symmetric positive definite matrix A has a Choleski

factorization LLr , then the matrix L is usually sparse too, but
also newly created nonzeros, called fill-in. According to the
envelope storage scheme of a sparse symmetric matrix, the
algorithm of the inner product of Choleski factorization can be
described as follows.

It is easy to modify the algorithm (4.2) with the help of a matrix
interface between a matrix element aij and a vector VE

(VectorEnvelope) with its address pointer vector PD
(PointerDiagonal), and a switch of which are only located in the
envelope should be exceeded.

5. SOLVING LINEAR NORMAL EQUATIONS BASED
ON CHOLESKI FACTORIZATION

5.1 General Form

As we described in Chapter 1, there are three steps to solve
linear normal equations based on Choleski factorization:
Choleski factorization, forward substitution and backward
substitution.

After Choleski decomposition of the normal matrix A, a low
triangular matrix L and an upper triangular matrix L7 are
obtained. So, the forward substitution and the backward
substitution can be expressed as follows respectively.

forward substitution:

for i = 1, .. ·, N

Y; = (b; - tl;kYk)f;; (5.1)

end of loop i

backward substitution :

for i = N, .. ·,l

x, =(y, - Itklxk) /2,,
k=t+l /'

(5.2)

end of loop i

5.2 Sparsity Consideration

After Choleski decomposition of the normal matrix A,
according to the envelope storage scheme of a sparse symmetric
matrix, the algorithm of the forward substitution and the
backward substitution can be described as follows.

It is easy to modify the algorithm (5.1) and (5.2) with the help
of a matrix interface between a matrix element alj and a vector

VE (VectorEnvelope) with its address pointer vector PD
(PointerDiagonal), and a switch of which are only located in the
envelope should be exceeded.

6. PARTIAL INVERSE

The inverse of the normal matrix plays an important role in least
square's problems: it is the covariance matrix of the least
squares estimations x and it is also very important for quality
control of the adjustment system.

The inverse of a general regular and square matrix A can be
computed by solving the system AB=/, with B = £ 1 • If we
already have factored A, the inverse can be computed column
by column by repeated forward and back substitution with

column e; of/. This is a very straightforward way of computing
the inverse of a matrix.

For sparse matrices, repeated forward and back substitution is
not a very elegant way for computing the inverse of a matrix.
The inverse of a sparse matrix is generally a full matrix.
However, we do not always need all these elements. For most
applications, the sparse inverse is sufficient, and other elements
are not needed. And also for some special purpose, only one or
a few elements of the inverse have to be computed. For this rea
son, we will introduce a technique to compute a large number of
elements of the inverse, corresponding to the nonzeros in the
Choleski factor, and modifying it to meet the needs of some
special purposes. The inverse that is computed by this technique
is called the partial inverse or sparse inverse.

6.1 The General Case

Let A be an n:12 symmetric positive definite matrix, with inverse

61

A-1 = B , and L be the lower triangular matrix from the
factorization A = LL7 , then we have the following derived
forms.

By a recursive partitioning technique, we can compute a subset
of the inverse in an economic manner.

The algorithm for computing the inverse of A should be
expressed as follows.

Bn = 1/[nn

for i = n - I,··· ,I

b; = - B;+17,/t;; (6.2)

b;; = (1/1;; - l~b;)/,

end of loop i

6.2 Sparsity Consideration

It has been discussed in Chapter 4, in most practical
applications the matrix to be factored is sparse, then the matrix
L is usually sparse too, but also newly fill-in created.

On the basis of the algorithm (6.2), let us consider the
computation of a single element blj in the i th column of the

inverse, i.e.,

-T- I
bij = b1 !;1!11 : (6.3)

Assume that I, is a sparse vector, then only those elements of

b1 (the j'h column of the inverse) are needed which

correspond to a nonzero in l,. It turns out that, when lij itself
-

is a nonzero, the required elements in b 1 correspond also to

nonzero in the Choleski factor. This becomes plausible when
we consider that the fill-in, created in the i th elimination step of

Choleski factorization, is given by Nonzero('; f). Hence, it is

possible to compute only the elements b,1 of the inverse which

correspond to nonzeros in the Choleski factor, i.e.
(i,j) E Nonzero(L).

There are two forms of algorithm (6.2) for computation. One is
to compute the inverse elements row by row, and another is to
compute the inverse element column by column. The second
form can be expressed as follows.

for i=n, .. ·,l

for j = n, .. ·, i + I

bJ; = - I,bjJk, lz,,
k=i+l I'

end of loopj
(6.3)

b;; =(111;; - I,b;Jk,) /2,, I k=i+l I'
end of loop i

An algorithm of form one solves the inverse from right to left

row by row, its needs overhead space to store a matrix L. While
the second algorithms compute the inverse element's column by
column, only a vector is needed for storing a column elements
of matrix L. Here, the second method is suggested for our
purpose.
The operation count is about twice the operation count of the
Choleski factorization process. However, due to additional
overheads, the actual execution time of the sparse inverse is
approximately three times the time needed for Choleski factori
zation. For most applications the sparse inverse is sufficient,
and other elements are not needed.

REFERENCE

References from Books:
A. George and J.W.H. Liu, 1981, Computer Solution of
Large Sparse Positive definite System, Prentice-Hall, Inc.
Engwood Cliffs, New Jersey 07632.

References from Other Literature:
Richard A. Snay, 1976, Reducing the Profile of Sparse
Symmetric Matrices, NOAA Technical Memorandum NOS
NGS-4.

62

	SKMBT_36318011011450

